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Objective: A primary behavioral pathol-
ogy in drug addiction is the overpowering
motivational strength and decreased abil-
ity to control the desire to obtain drugs. In
this review the authors explore how ad-
vances in neurobiology are approaching
an understanding of the cellular and cir-
cuitry underpinnings of addiction, and
they describe the novel pharmacothera-
peutic targets emerging from this under-
standing.

Method: Findings from neuroimaging of
addicts are integrated with cellular stud-
ies in animal models of drug seeking.

Results: While dopamine is critical for
acute reward and initiation of addiction,
end-stage addiction results primarily from
cellular adaptations in anterior cingulate
and orbitofrontal glutamatergic projec-
tions to the nucleus accumbens. Patho-

physiological plasticity in excitatory trans-
mission reduces the capacity of the
prefrontal cortex to initiate behaviors in
response to biological rewards and to pro-
vide executive control over drug seeking.
Simultaneously, the prefrontal cortex is
hyperresponsive to stimuli predicting
drug availability, resulting in supraphysio-
logical glutamatergic drive in the nucleus
accumbens, where excitatory synapses
have a reduced capacity to regulate neu-
rotransmission.

Conclusions: Cellular adaptations in pre-
frontal glutamatergic innervation of the
accumbens promote the compulsive
character of drug seeking in addicts by
decreasing the value of natural rewards,
diminishing cognitive control (choice),
and enhancing glutamatergic drive in re-
sponse to drug-associated stimuli.

(Am J Psychiatry 2005; 162:1403–1413)

Among the most insidious characteristics of drug ad-
diction is the recurring desire to take drugs even after many
years of abstinence. Equally sinister is the compromised
ability of addicts to suppress drug seeking in response to
that desire even when confronted with seriously adverse
consequences, such as incarceration. The enduring vul-
nerability to relapse is a primary feature of the addiction
disorder and has been identified as a point where pharma-
cotherapeutic intervention may be most effectively em-
ployed (1). In order to fashion rational pharmacotherapies
it is necessary to understand the neurobiological under-
pinnings of craving, relapse, choice, and control, and the
last decade has seen significant advances toward achieving
this goal. However, as the pursuit for the neural basis of ad-
diction advances, it is clear that the search intimately in-
volves understanding the neurobiological basis of motiva-
tion and choice for biological rewards, such as food and
sex, as well as more cognitively and experientially based re-
wards, such as friendship, family, and social status. More-
over, the fact that vulnerability to relapse in addicts can
persist after years of abstinence implies that addiction is
caused by long-lasting changes in brain function as a result
of pharmacological insult (repeated drug use), genetic dis-
position, and environmental associations made with drug
use (learning). Therefore, comprehending the basis of ad-
diction also requires understanding physiological mecha-

nisms of enduring neuroplasticity. Accordingly, this review
begins with an overview of the neural circuitry and mecha-
nisms of neuroplasticity that underlie the generation of
adaptive behavioral responses to motivationally relevant
events.

After outlining the neurobiology of motivated behavior,
we will describe the pathological dysregulation of cellular
and circuitry functions produced by addiction. As early as
the 1970s it became clear that the acute administration of
most drugs of abuse increases dopamine transmission in
the basal ganglia (2), which is essential for these drugs to
reinforce behavior, and thereby promote addiction (3, 4).
Therefore, dopamine projections to the basal ganglia and
cortex are important in facilitating the encoding of learned
associations necessary for the development of addiction
(5). In contrast, once a person is addicted the uncontrol-
lable urge to obtain drugs and relapse arises from a patho-
logical form of the plasticity in excitatory transmission (6–
9). Alterations in excitatory transmission occur physio-
logically when learned associations with motivationally
relevant events are formed. Similarly, addicts’ extreme dif-
ficulty in resisting the desire to use drugs of abuse is en-
coded by changes in excitatory synapses, and it will be pro-
posed that the molecular underpinnings of dysregulated
excitatory transmission may be fruitful pharmacothera-
peutic targets in ameliorating addiction.



1404 Am J Psychiatry 162:8, August 2005

NEURAL BASIS OF ADDICTION

http://ajp.psychiatryonline.org

The Neurobiology 
of Adaptive Behavior

Seeking food and companionship and avoiding physical
and psychological discomfort are examples of motivated
adaptive behaviors. Motivated behavior classically implies
both an activation of the organism by environmental or
interoceptive stimuli and a directed behavioral output
(10). Thus, the neurobiological search for the antecedents
of motivated behavior involves defining the neural sub-
strates that 1) attach sufficient importance (salience) to an
integrated stimulus that behavior is “activated” and 2) “di-
rect” this state of activation toward a specific behavioral
response. While we have made substantial progress to-
ward identifying the neural circuits and cellular founda-
tions responsible for activating behavior, we have been
only marginally effective at understanding the substrates
that cause one behavior to be favored over another behav-
ior (direction of behavior).

Activation of Behavior

Neurobiology has focused on three brain regions in the
activation of behavior: the amygdala, prefrontal cortex,
and nucleus accumbens. The amygdala emerged from
studies showing involvement in fear-motivated behaviors
(11), while the nucleus accumbens was identified from a
connection with reward-motivated behaviors (12). The
prefrontal cortex is less involved in establishing whether a
stimulus is positive or negative (valence); rather, it regu-
lates the overall motivational salience and determines the

intensity of behavioral responding (13, 14). More recent
studies have blurred the linkage between positive and
negative emotional valence in the amygdala and nucleus
accumbens, and they have revealed a neuronal circuit con-
sisting of glutamatergic interconnections among the amyg-
dala, nucleus accumbens, and prefrontal cortex and dopa-
minergic afferents to all three regions (15, 16). Figure 1
illustrates this circuit and includes three additional com-
ponents. The accumbens has dense projections carrying γ-
aminobutyric acid (GABA) and neuropeptides to the ven-
tral pallidum that are critical for the expression of moti-
vated behaviors (17). Another GABA/neuropeptide com-
ponent of the circuit is the extended amygdala, which is a
cluster of interconnected nuclei, including the central
amygdala nucleus, bed nucleus of the stria terminalis, and
shell of the nucleus accumbens, that is in part a conduit for
environmental and interoceptive stressors (18). It is im-
portant to note that while the shell of the accumbens pos-
sesses some functional and anatomical characteristics of
the extended amygdala (especially in terms of the neuro-
circuitry of addiction), it is also anatomically distinct from
the other nuclei in terms of some aspects of connectivity
and histochemistry (19). Finally, there is a series subcircuit
consisting of GABA-ergic projections from the ventral pal-
lidum to the mediodorsal thalamus and a reciprocal gluta-
matergic projection between the thalamus and prefrontal
cortex that mediates reintegration of information exiting
the circuit back into the prefrontal cortex (20).

Dopamine and the ventral tegmental area. Projec-
tions from the ventral tegmental area release dopamine
throughout the circuit in response to a motivationally rel-
evant event (21, 22). The release of dopamine signals the
circuit to initiate adaptive behavioral responses to the
motivational event, and in doing so it facilitates cellular
changes that establish learned associations with the event
(5). In this way the organism can more effectively emit an
adaptive behavioral response should the event reoccur.
However, in contrast to repeated drug administration, as
a motivational event becomes familiar by repeated expo-
sure, dopamine release is no longer induced by that par-
ticular event (23). In this case, although the behavioral
response remains goal directed, it is well learned and fur-
ther dopamine-induced neuroplastic changes are not
necessary. However, it is important to note that condi-
tioned stimuli predicting the event continue to trigger re-
lease of dopamine (23–25). Therefore, in most natural
situations where learned associations accompany a re-
peatedly encountered motivational event, dopamine will
likely be released as part of the overall experience. In sum,
dopamine can be seen as serving two functions in the cir-
cuit: 1) to alert the organism to the appearance of novel
salient stimuli, and thereby promote neuroplasticity
(learning), and 2) to alert the organism to the pending ap-
pearance of a familiar motivationally relevant event, on
the basis of learned associations made with environmen-
tal stimuli predicting the event (23, 26).

FIGURE 1. Neural Circuitry Mediating the Activation of Goal-
Directed Behavior
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Amygdala. The amygdala is especially critical in estab-
lishing learned associations between motivationally rele-
vant events and otherwise neutral stimuli that become
predictors of the event (27). Interactions between the ba-
solateral and central amygdala nucleus involve autonomic
and endocrine associations by means of projections from
the central nucleus to the brainstem, the hypothalamus,
and dopamine neurons in the ventral tegmental area (28,
29). In contrast, the glutamatergic projections from the
basolateral amygdala to the prefrontal cortex and accum-
bens are required for learned associations to influence
more complex behavioral responses (16, 20). The func-
tional integration between the amygdala and prefrontal
cortex has been demonstrated in many neuroimaging
studies in which healthy subjects were exposed to stimuli
associated with motivationally relevant events, ranging
from food and sex to social cooperation (30–32).

Prefrontal cortex. The anterior cingulate and ventral
orbital cortices in the prefrontal cortex are recruited by
motivationally relevant events, as well as stimuli that pre-
dict such events, and contribute to whether a behavioral
response will be emitted and the relative intensity of that
response (14, 33). Consistent with involvement of dopa-
minergic afferents, the activation of the prefrontal cortex
by rewarding stimuli is strongly influenced by the predict-
ability of the reward (34, 35).

Nucleus accumbens. The accumbens contains two
functionally distinct subcompartments, termed the shell
and core (36). The shell is strongly interconnected with the
hypothalamus and ventral tegmental area and is corre-
spondingly important in regulating ingestive behaviors
(21, 36). Reciprocal dopamine innervation from the ven-
tral tegmental area to the accumbens shell is important in
modulating motivational salience and contributes to es-
tablishing learned associations between motivational
events and concurrent environmental perceptions (37,
38). In contrast, the core compartment is anatomically as-
sociated with the anterior cingulate and orbitofrontal cor-
tex and appears to be a primary site mediating the expres-
sion of learned behaviors in response to stimuli predicting
motivationally relevant events (36, 39). Moreover, the
obligatory involvement of the accumbens core in express-
ing adaptive behavior depends not on dopaminergic affer-
ents but, rather, on glutamatergic afferents from the pre-
frontal cortex (40). Although not an obligatory event,
dopamine is released into the core in response to stimuli
predicting a rewarding event and likely modulates the ex-
pression of adaptive behaviors (41, 42).

Direction of Behavior

While our understanding of brain mechanisms respon-
sible for activating goal-directed behavior is considerable,
the mechanisms by which the circuit in Figure 1 deter-
mines or “chooses” the direction of behavior are less clear.
Choice is initiated in part by means of the prefrontal cor-
tex, as some studies have shown that activation of the

prefrontal cortex precedes behavior (33, 43, 44). Gluta-
matergic efferents from the prefrontal cortex stimulate be-
havioral output by accessing accumbens-thalamocortical
circuitry (45, 46). It has long been proposed that distinct
neuronal ensembles within the accumbens encode the re-
lationship between discrete stimuli and behavioral re-
sponses (47). However, only recently was it demonstrated
that different subsets of neurons in the accumbens re-
spond differentially to cues associated with distinct moti-
vationally relevant stimuli, such as water versus cocaine
(48). How these ensembles are formed and organized is
unclear. However, the intensity and quality of behavioral
output are strongly influenced by both dopaminergic and
glutamatergic input to the accumbens, and activity at
these synapses produces morphological changes in the
dendrites of accumbens spiny cells (49). Changes in den-
dritic spine density occur in cellular and in vivo models of
learning, and they correlate roughly with excitatory syn-
aptic contacts (50). In addition to morphological changes,
in vitro models of neuroplasticity reveal intracellular
changes that can augment or diminish excitatory trans-
mission (51, 52). Recent studies demonstrate that addic-
tion is associated with neuroplasticity in these cellular
mechanisms of synaptic organization, and we will discuss
them in detail.

Addiction: Dysregulation 
in the Motive Circuit

Repeated use of addictive drugs induces reorganization
in the circuit shown in Figure 1 to establish behaviors char-
acteristic of addiction, and Figure 2 illustrates connections
in the circuit that are particularly critical for craving and
drug seeking. In preclinical studies the most widely used
animal model is training rodents to self-administer a drug

FIGURE 2. Neural Circuitry Mediating Drug Seekinga

a The series projection from the prefrontal cortex to the nucleus ac-
cumbens core to the ventral pallidum is a final common pathway for
drug seeking initiated by stress, a drug-associated cue, or the drug it-
self (which increases dopamine release in the prefrontal cortex).
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(18). The behavior is extinguished, making it possible to re-
instate drug seeking by exposing the animals to stimuli
similar to those that elicit craving in human addicts, such
as a cue previously associated with drug delivery, a mild
stressor, or a single dose of the drug (18). In great measure
the circuit in Figure 2 was assembled by inactivating spe-
cific nuclei in animals tested for reinstatement of drug
seeking, as well as using cerebral blood flow or blood-oxy-
genation-level-dependent responses in addicts elicited by
the presentation of cues previously associated with drug
use (15). Three general principles emerge from the circuit
in Figure 2.

Final Common Pathway

First, this glutamatergic projection is a final common
pathway for initiation of drug seeking. Inactivation of the
prefrontal cortex in rats prevents the reinstatement of
drug seeking by all three modalities of reinstating stimuli
(29, 53–55). Further supporting an obligatory role of this
projection in drug seeking, AMPA glutamate receptor an-
tagonists in the nucleus accumbens prevent drug- and

cue-induced reinstatement (40, 56, 57). Moreover, in-
creased release of glutamate in the nucleus accumbens
occurs following drug- and stress-primed reinstatement,
and treatments that prevent the release of glutamate also
prevent drug seeking (29, 58). Within the accumbens the
region most strongly associated with drug seeking is the
core subcompartment, consistent with the role of this re-
gion in emitting learned behavioral responses (see the
preceding). Neuroimaging studies support a strong link-
age between the prefrontal cortex and drug seeking. The
magnitude of change in metabolic activity in both the or-
bitofrontal and anterior cingulate cortices statistically cor-
relates with the intensity of the self-reported cue-induced
craving (33, 35, 59, 60). It is interesting that the craving-as-
sociated increase in prefrontal activity is on a drug-free
background of reduced activity (13, 15, 61, 62). Moreover,
activation of the anterior cingulate and orbitofrontal cor-
tex in addicts is inhibited in experimental situations of
decision making (63, 64) and in response to biologically
relevant rewards, such as sexually evocative cues (30). To-

FIGURE 3. PET Brain Images Showing the Effects of Intravenous Methylphenidate on Extracellular Dopamine in the
Striatum and on Regional Glucose Metabolism in Cocaine-Addicted Subjectsa

a Extracellular dopamine in the striatum was assessed by measuring [11C]raclopride binding. Regional brain glucose metabolism was assessed
by measuring [18F]fluorodeoxyglucose metabolism. Increases with methylphenidate were determined by calculating the difference between
methylphenidate and placebo conditions. As shown in the scattergrams, although methylphenidate’s increases in dopamine in the striatum
are associated with the “high,” the activation of the orbitofrontal cortex is associated with drug craving.
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gether, these data indicate that dysregulation in the ante-
rior cingulate and orbitofrontal cortex is critically involved
in the prepotent motivation by stimuli predicting drug
availability relative to stimuli associated with biological
rewards, as well as the difficulty experienced by addicts in
cognitive control over drug seeking. Indeed, just as hyper-
activity of the anterior cingulate and orbitofrontal cortex
contributes to compulsive behaviors in patients with ob-
sessive-compulsive disorders, the relative hypermetabo-
lism in response to drug-related stimuli could trigger com-
pulsive drug intake (65).

Modality-Dependent Subcircuits

The second principle in the circuitry of drug seeking is
that different modes of stimuli inducing drug seeking in-
volve distinct components of the circuit. In contrast to the
obligatory role of the glutamate projection from the pre-
frontal cortex to the accumbens core in drug seeking, dis-
tinct nuclei in Figure 2 regulate reinstatement in response
to selective stimuli. For example, cue-primed drug seeking
requires involvement of the basolateral amygdala (66–68),
while stress- and drug-primed drug seeking do not (29, 55,
69). Also, stress-induced drug seeking selectively engages
nuclei in the extended amygdala (29, 70). Consistent with
a role for the amygdala in recognition of cue association
with drug use and not in determining cue salience or the
intensity of the behavioral responding, neuroimaging
studies reveal that the amygdala is not consistently corre-
lated with the reported intensity of craving (33, 59, 71).

Requirement for Dopamine Transmission

The last principle is that all three modalities of drug-
seeking stimuli require dopamine transmission. Since
drug seeking is inhibited by inactivation of the ventral teg-
mental area regardless of the stimulus modality employed,
the mesocorticolimbic dopamine projection is obligatory
for reinstatement (29, 55, 72). However, while the reward-
ing effects accompanying the acute administration of
most drugs of abuse depend on increased dopamine re-
lease in the accumbens (2, 3), the reinstatement of drug
seeking requires dopamine release in the prefrontal cortex
and amygdala (29, 53, 55, 73), not in the nucleus accum-
bens core (40, 55, 57). Dopamine release in the prefrontal
cortex is antecedent to activation of the projection from
the prefrontal cortex to the accumbens core since prevent-
ing cortical dopamine release prevents glutamate release
in the nucleus accumbens by a stress or drug prime (29,
58). Also, reinstatement elicited by dopamine release in
the prefrontal cortex is blocked by glutamate antagonists
in the accumbens core (56). Data from imaging studies
support the idea that once a person is addicted, dopamine
release into the accumbens is not critical for craving. By
using positron emission tomography and the D2/3 dopa-
mine receptor ligand [11C]raclopride in combination with
a dopamine reuptake inhibitor such as methylphenidate,
it is possible to estimate dopamine release. These studies

have corroborated in humans that increases in dopamine
in the striatum are associated with the reinforcing effects
of stimulants (as evidenced by self-reported “high”) (Fig-
ure 3). However, in relation to comparison subjects, co-
caine-addicted subjects showed less dopamine release in
parallel with fewer self-reports of a methylphenidate-in-
duced “high” (74). In contrast, an intense methylpheni-
date-induced cocaine craving in cocaine abusers but not
in comparison subjects indicates that addiction is associ-
ated not with either enhanced drug-induced dopamine
release in the striatum or an augmented pleasurable re-
sponse to the drug but, rather, with enhanced motivation
to procure the drug. As predicted by the animal studies,
methylphenidate-induced craving in cocaine-addicted
subjects is not associated with dopamine increases in the
striatum but with increased activity in the orbitofrontal
cortex (Figure 3). In addition, further contributing to the
hypofunction of striatal dopamine is low D2 receptor
availability in the striatum of addicted subjects (65). Given
the role we have described for dopamine transmission in
the accumbens, to signal the salience of novel motiva-
tional events, the decrease in dopamine release and recep-
tion combined with the reduced activation of the prefron-
tal cortex in response to biologically relevant stimuli (see
the preceding) may explain the reduced sensitivity of ad-
dicted subjects to “natural” reinforcers.

Stages of Addiction

The portrait of addiction drawn by the studies we have
discussed indicates that dopamine release in the accum-
bens is required for the drug high and for the initiation of
addiction but that repeated use of a drug causes gradual

FIGURE 4. The Three Stages of Addictiona

a Acute drug effects occur widely in dopamine terminal fields in the
circuit shown in Figure 1. Neuroadaptations mediating the transi-
tion from recreational drug use to addiction endure for a finite pe-
riod after discontinuation of repeated drug administration and ini-
tiate the changes in protein expression and function that emerge
during withdrawal and underlie the behavioral characteristics of
end-stage addiction, such as craving, relapse, and reduced ability to
suppress drug seeking.
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recruitment of the prefrontal cortex and its glutamatergic
efferents to the accumbens.

The switch from dopamine- to glutamate-based behav-
ior reveals that the development of addiction occurs in a
chronological sequence during which different parts of
the circuit are preeminent. Similarly, cellular adaptations
occur in a chronological sequence. Three temporally se-
quenced stages of addiction are illustrated in Figure 4:
1) acute drug effects, 2) transition from recreational use
to patterns of use characteristic of addiction, and 3) end-
stage addiction, which is characterized by an overwhelm-
ing desire to obtain the drug, a diminished ability to con-
trol drug seeking, and reduced pleasure from biological
rewards.

Stage 1: Acute Drug Effects

The acute rewarding effects of drugs involve supraphys-
iological dopamine release throughout the motive circuit,
which induces changes in cell signaling. The prototype
signaling cascade in this regard is D1 dopamine receptor
stimulation resulting in the activation of cAMP-dependent
protein kinase (PKA), PKA-induced phosphorylation of
the transcriptional regulator cAMP response element
binding protein (CREB), and the induction of immediate
early gene products, such as cFos (75, 76). The induction
of Fos and other immediate early genes promotes short-
term neuroplastic changes in response to the acute drug
injection that persist for a few hours or days after drug ad-
ministration (77). Thus, these molecular consequences of
acute drug administration are widely distributed in the
motive circuit and initiate cellular events leading up to ad-
diction, but they do not mediate the enduring behavioral
consequences of addiction.

Stage 2: Transition to Addiction

The transition from recreational drug use to addiction is
associated with changes in neuron function that accumu-
late with repeated administration and diminish over days
or weeks after discontinuation of drug use. The most well-
studied molecular adaptation in this category is D1-recep-
tor-mediated stimulation of proteins with long half-lives,
such as ∆FosB (78). ∆FosB is a transcriptional regulator
that modulates the synthesis of certain AMPA glutamate
receptor subunits and cell-signaling enzymes (79, 80). Re-
cently, the pattern of gene expression induced by long-
term induction of ∆FosB was shown to overlap consider-
ably with the pattern of changes induced in the accum-
bens by chronic cocaine administration, strongly impli-
cating ∆FosB in mediating the transition to addiction (81).
In addition to the effects of ∆FosB, elevation of the GluR1
glutamate receptor subunit in the ventral tegmental area
for a few days after discontinuation of cocaine administra-
tion may contribute to the development of addiction (82).
Also, there are alterations in the content and function of
various proteins directly involved in dopamine transmis-
sion that endure for a few days after drug administration

stops; these proteins include tyrosine hydroxylase, dopa-
mine transporters, RGS9-2, and D2 autoreceptors (83, 84).
However, these changes in dopamine transmission appear
to be compensatory and may not directly mediate the
transition to addiction.

Stage 3: End-Stage Addiction

Vulnerability to relapse in end-stage addiction endures
for years and results from equally enduring cellular
changes. It is interesting that, like the locomotor sensitiza-
tion and drug-seeking behaviors associated with addic-
tion (85, 86), changes in protein content and/or function
in this category often become greater with increasing peri-
ods of withdrawal (87–89). This temporal characteristic is
consistent with the possibility that the more temporary
changes in protein expression that mediate the transition
to addiction (see the preceding) may induce changes in
protein expression that convert vulnerability to relapse
from temporary and reversible into permanent features of
addiction.

Cellular Adaptations in Glutamatergic 
Projection From Prefrontal Cortex to 
Accumbens That Mediate Drug Seeking

The involvement of the glutamate projection from the
prefrontal cortex to the accumbens core as a final com-
mon pathway for initiating drug seeking poses molecular
changes in the projection as potential mediators of the un-
controllable desire to take drugs that characterizes ad-
diction. Moreover, the search for cellular changes in the
projection from the prefrontal cortex to the accumbens
that are involved in the recruitment of this pathway by re-
peated drug use may reveal pharmacological targets for
ameliorating craving and relapse.

Prefrontal Cortex

Withdrawal from repeated administration of psycho-
stimulants or opioids results in dysmorphisms in the den-
dritic tree of pyramidal cells in the prefrontal cortex (49,
90). The enduring drug-induced morphological plasticity
indicates long-lasting alterations in neurotransmission
(91). Accordingly, there is reduced cell signaling through
transmitter receptors coupled to Gi (a G protein subtype)
(92, 93) that is mediated in part by an elevation in the G
protein binding protein AGS3 (87). It is important that an
elevated AGS3 level increases the activity of prefrontal
glutamatergic projections to the nucleus accumbens and
that normalizing the level of AGS3 in cocaine-addicted
rats prevents the reinstatement of drug seeking (87). Re-
cently, it was postulated that the increased excitability of
pyramidal cells may result from AGS3 inhibition of D2 re-
ceptor signaling and a corresponding relative increase in
D1 signaling (94). Supporting this possibility are the find-
ings that D1 receptor blockade in the prefrontal cortex
prevents the reinstatement of drug seeking (53) and that
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withdrawal from repeated amphetamine administration
renders pyramidal cells more excitable (95).

Nucleus Accumbens: Presynaptic Adaptations

In the nucleus accumbens there are two categories of
adaptation in glutamate transmission, those that promote
presynaptic glutamate release and those altering postsyn-
aptic responsiveness to released glutamate. Increased re-
lease of glutamate in response to a stimulus that induces
drug seeking arises in part from adaptations that reduce
inhibitory presynaptic regulation by metabotropic gluta-
mate (mGluR2/3) inhibitory autoreceptors (96, 97), and
perhaps from alterations in the organization of vesicles in
presynaptic terminals (98–100). There is a reduction in
basal extracellular glutamate in the nucleus accumbens
after withdrawal from cocaine that results from reduced
glial cystine-glutamate exchange (96). The cystine-gluta-
mate exchanger is the rate-limiting step in glutathione
synthesis (101) and is responsible for the majority of extra-
cellular glutamate outside the synaptic cleft (102). Thus,
the exchanger is the primary contributor to maintenance
of tone on mGluR2/3 inhibitory autoreceptors and thereby
inhibits the release of synaptic glutamate (103). It is note-
worthy that activation of cystine-glutamate exchange by
procysteine drugs prevents the reinstatement of drug
seeking by restoring extrasynaptic glutamate and stimu-
lating inhibitory presynaptic mGluR2/3 (96, 103).

Nucleus Accumbens: Postsynaptic Adaptations

Postsynaptic responses to glutamate in the accumbens
of animals withdrawn from cocaine reveal enduring adap-

tations in postsynaptic receptor associated proteins (post-
synaptic density) that can alter glutamate receptor intrac-
ellular signaling and trafficking to the membrane. This
includes reductions in scaffolding proteins such as PSD-
95 (104) and Homer (89, 105). Together, these changes in
postsynaptic density proteins may account for the den-
dritic dysmorphisms produced in the accumbens by with-
drawal from psychostimulants or morphine (49, 90). The
cellular ramifications of changes in postsynaptic density
induced by cocaine withdrawal remain to be fully investi-
gated. However, animals with constitutive Homer2 gene
deletion show remarkable similarities to animals with-
drawn from chronic cocaine, including reduced cystine-
glutamate exchange, increased AGS3 levels, increased re-
leasability of glutamate, as well as augmented behavioral
responsiveness to cocaine (106). Moreover, many of the
effects of Homer2 gene deletion are normalized when
Homer2 is restored to the accumbens by viral transfection.
Similarly, the deletion of the PSD-95 gene augments the
acute behavioral response to cocaine (104).

Potential New Targets 
for Pharmacotherapeutic Amelioration 
of Addiction

The enduring changes in proteins regulating excitatory
transmission in the projection from the prefrontal cortex
to accumbens core point to a number of novel targets for
treating addiction. However, it is important to remember
that additional pharmacotherapies could target other
components of the circuit shown in Figure 2 that pertain

FIGURE 5. Potential Pharmacotherapeutic Targets for Normalizing Dysregulated Glutamate Release and Postsynaptic
Responsiveness in the Nucleus Accumbens to Ameliorate Cocaine Craving and Relapsea

a Glu=glutamate, Cys=cystine.
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selectively to stress- or cue-induced relapse. These in-
clude drugs that 1) decrease the motivational value of the
drug, 2) increase the salience and motivational value of
nondrug reinforcers, or 3) inhibit conditioned responses
to stimuli predicting drug availability. Most advanced in
this regard are drugs that restore inhibitory presynaptic
regulation of excitatory transmission as a means to in-
terfere with the enhanced salience of the drug or drug-
related cues. Figure 5 illustrates that this has been ap-
proached by three different mechanisms, all of which have
been shown to reduce drug seeking in the reinstatement
model of relapse. Procysteine drugs such as N-acetyl-
cysteine have been used clinically to stimulate cystine-
glutamate exchange and restore glutathione following ac-
etaminophen overdose (107). N-Acetylcysteine adminis-
tration to rats withdrawn from cocaine self-administra-
tion restores glutamatergic tone on mGluR2/3 inhibitory
presynaptic receptors and abolishes cocaine-induced re-
instatement of drug seeking (96). It is noteworthy that in
animal models it is effective only in cocaine-trained sub-
jects and is without effect on control animals or animals
trained in a food-seeking paradigm (96). Direct stimula-
tion of mGluR2/3 with systemically active agonists also re-
duces the reinstatement of drug seeking (108). Finally, a
portion of decreased mGluR2/3 inhibitory tone on pre-
synaptic glutamate release arises from the increased levels
of AGS3 produced by withdrawal from repeated cocaine,
and restoring AGS3 levels to normal in the prefrontal cor-
tex blocks cocaine-induced reinstatement of drug seeking
(87). Unfortunately, the pharmacological techniques for
manipulating AGS3 levels in vivo require intracellular
transduction of active protein, and the currently available
technologies to accomplish this (e.g., Tat fusion proteins,
viral transfection, or oligonucleotide/iRNA infusions) are
not available for clinical use.

The changes in postsynaptic proteins induced by cocaine
withdrawal also point to potential pharmacotherapeutic
interventions. Notably, blockade of AMPA glutamate recep-
tors in the nucleus accumbens prevents cocaine- or cue-
primed reinstatement of drug seeking in animal models
(40, 56, 57). In addition, while tests in the reinstatement
model have not yet been conducted, restoration of the scaf-
folding proteins Homer and PSD-95 may also inhibit drug
seeking (104, 106). Unfortunately, akin to AGS3, reagents
to manipulate scaffolding proteins are not yet available for
use in humans. A final promising discovery is that mice
with a deletion of the mGluR5 gene show reduced respon-
siveness to cocaine (109), and systemic administration of
an mGluR5 antagonist reduces cocaine and nicotine self-
administration (110).

Summary

The cardinal behavioral feature of drug addiction is con-
tinued vulnerability to relapse after years of drug absti-
nence. Vulnerability arises from an intense desire for the

drug and reduced capacity to control that desire. Addic-
tion can be viewed as a pathology in how importance is at-
tached to stimuli that predict drug availability and how the
brain regulates (chooses) behavioral output in response to
those stimuli. Thus, end-stage addiction is characterized
by the excessive motivational importance of drug seeking.
The glutamatergic projection from the prefrontal cortex to
the accumbens is a final common pathway for eliciting
drug seeking. This anatomical locus of pathology is con-
sistent with behavioral dysregulation in addiction, since
the prefrontal-accumbens projection is credited with pro-
viding the properties of motivational salience and direc-
tion to normal goal-directed behavior. Recently, some of
the cellular mediators of the pathology in the prefrontal-
accumbens glutamate projection have been identified.
These include 1) alterations in G protein signaling in the
prefrontal cortex that increase the excitability of neurons
projecting to the accumbens, 2) augmented presynaptic
glutamate release in the accumbens due to reduced inhib-
itory presynaptic regulation and increased releasability of
synaptic vesicles, and 3) alterations in postsynaptic pro-
teins that result in rigid dendritic morphology and signal-
ing. These findings combined with functional imaging
studies in addicts reveal a situation whereby prefrontal
regulation of behavior is reduced in basal conditions,
thereby contributing to the reduced salience of nondrug
motivational stimuli and reduced decision-making ability.
However, when stimuli predicting drug availability are
presented, there is profound activation of the prefrontal
cortex and glutamatergic drive to the nucleus accumbens.
Combined with the cellular neuroadaptations in the ac-
cumbens that render excitatory synapses relatively im-
mune to regulation, the increased prefrontal drive con-
tributes overpowering motivational salience to drug-
associated stimuli and correspondingly impels craving
and drug seeking. The combined functional and cellular
evidence predicts that pharmacotherapeutic agents regu-
lating prefrontal glutamatergic drive to the nucleus ac-
cumbens have the potential to ameliorate both the exces-
sive motivational importance given to stimuli that predict
drug availability and the reduced capacity of addicts to in-
hibit drug intake.
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